From Hermite to stationary subdivision schemes in one and several variables

نویسندگان

  • Jean-Louis Merrien
  • Tomas Sauer
چکیده

Vector and Hermite subdivision schemes both act on vector data, but since the latter one interprets the vectors as function values and consecutive derivatives they differ by the “renormalization” of the Hermite scheme in any step. In this paper we give an algebraic factorization method in one and several variables to relate any Hermite subdivision scheme that satisfies the so–called spectral condition to a vector subdivision scheme. These factorizations are natural extensions of the “zero at π” condition known for the masks of refinable functions. Moreover, we show how this factorization can be used to investigate different forms of convergence of the Hermite scheme and why the multivariate situation is conceptionally more intricate than the univariate one. Finally, we give some examples of such factorizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Hermite subdivision schemes of de Rham-type

Though a Hermite subdivision scheme is non-stationary by nature, its non-stationarity can be of two types, making useful the distinction between Inherently Stationary (I.S.) and Inherently Non-Stationary (I.N.S.) Hermite subdivision schemes. This paper focuses on the class of inherently stationary, dual non-interpolatory Hermite subdivision schemes that can be obtained from known Hermite interp...

متن کامل

Analysis of Hermite interpolatory subdivision schemes

The theory of matrix subdivision schemes provides tools for the analysis of general uniform stationary matrix schemes The special case of Hermite interpolatory subdivision schemes deals with re nement algorithms for the function and the derivatives values with matrix masks depending upon the re nement level i e non stationary matrix masks Here we rst show that a Hermite interpolatory subdivisio...

متن کامل

Hermite-interpolatory subdivision schemes

Stationary interpolatory subdivision schemes for Hermite data that consist of function values and first derivatives are examined. A general class of Hermite-interpolatory subdivision schemes is proposed, and some of its basic properties are stated. The goal is to characterise and construct certain classes of nonlinear (and linear) Hermite schemes. For linear Hermite subdivision, smoothness cond...

متن کامل

Convergent Vector and Hermite Subdivision Schemes

Hermite subdivision schemes have been studied by Merrien, Dyn and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily. With this transformation, the stud...

متن کامل

Parametric Families of Hermite Subdivision Schemes in Dimension 1

We introduce a class of stationary 1-D interpolating subdivision schemes, denoted by Hermite(m, L, k), which classifies all stationary Lagrange or Hermite interpolating subdivision schemes with prescribed multiplicity, support and polynomial reproduction property: Given m > 0, L > 0 and 0 ≤ k ≤ 2mL − 1, Hermite(m, L, k) is a family parametrized by m2L− m(k +1)/2 (in the symmetric case) or 2m2L−...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012